1015-13-93 Andrew R. Kustin* (kustin@math.sc.edu), Mathematics Department, University of South Carolina, Columbia, SC 29208, and Adela N. Vraciu. Socle degrees of Frobenius powers. Preliminary report.
Theorem. Let k be a field of positive characteristic $p, q=p^{e}$ for some positive integer e, P be a positively graded polynomial ring over k, and $R=P / C$ be a complete intersection ring with C generated by a homogeneous regular sequence. Let \mathfrak{m} be the maximal homogeneous ideal of R, J be a homogeneous \mathfrak{m}-primary ideal in R, and I be a lifting of J to P. Let ℓ be the dimension of the socle $(J \mathfrak{m}) / J$ of R / J and d_{1}, \ldots, d_{ℓ} be the degrees of the generators of the socle. Then the following statements are equivalent:
(a) $\operatorname{pd}_{R} R / J<\infty$,
(b) the socle $\left(J^{[q]} \mathfrak{m}\right) / J^{[q]}$ of $R / J^{[q]}$ has dimension ℓ and the degrees of the generators are $q d_{i}-(q-1)$ a, for $1 \leq i \leq \ell$, where a denotes the a-invariant of R,
(c) $(C+I)^{[q]}\left(C^{[q]} C\right)=C+I^{[q]}$, and
(d) $I^{[q]} \cap C=(I \cap C)^{[q]}+C I^{[q]}$.
(Received January 28, 2006)

