1015-13-93 Andrew R. Kustin* (kustin@math.sc.edu), Mathematics Department, University of South Carolina, Columbia, SC 29208, and Adela N. Vraciu. Socle degrees of Frobenius powers. Preliminary report.

Theorem. Let k be a field of positive characteristic p, $q = p^e$ for some positive integer e, P be a positively graded polynomial ring over k, and R = P/C be a complete intersection ring with C generated by a homogeneous regular sequence. Let \mathfrak{m} be the maximal homogeneous ideal of R, J be a homogeneous \mathfrak{m} -primary ideal in R, and I be a lifting of J to P. Let ℓ be the dimension of the socle $(J\mathfrak{m})/J$ of R/J and d_1, \ldots, d_ℓ be the degrees of the generators of the socle. Then the following statements are equivalent:

- (a) $\operatorname{pd}_R R/J < \infty$,
- (b) the socle $(J^{[q]}\mathfrak{m})/J^{[q]}$ of $R/J^{[q]}$ has dimension ℓ and the degrees of the generators are $qd_i (q-1)a$, for $1 \le i \le \ell$, where a denotes the a-invariant of R,
- (c) $(C+I)^{[q]}(C^{[q]}C) = C+I^{[q]}$, and
- (d) $I^{[q]} \cap C = (I \cap C)^{[q]} + CI^{[q]}.$

(Received January 28, 2006)