1015-35-211 Gerardo A Mendoza* (gmendoza@temple.edu), Department of Mathematics, Temple University, Philadelphia, PA 19122. On eigenspaces, hypoellipticity, and positivity of R-invariant differential operators. Preliminary report.

Let M be a compact manifold, let T be a globally defined real smooth nowhere vanishing vector field on M, and let \mathfrak{a}_t denote the one-parameter group of diffeomorphisms generated by T. Suppose there is a T- invariant positive density on M. Let $E \to M$ be a Hermitian vector bundle and suppose there is a one-parameter group of isometries $\mathfrak{a}_t^* : E \to E$ covering \mathfrak{a}_{-t} . Let $L_T \in \text{Diff}^1(M, E)$ be the differential operator associated with this action. Suppose $P \in \text{Diff}^m(M; E)$ commutes with L_T . We will outline proofs of the following two statements. (1) If $\sigma(P) + \sigma(-iL_T)^m - \lambda I$ is invertible for λ in a real line in \mathbb{C} on $T^*M \setminus 0$ then $-iL_T : C^{\infty}(M; E) \cap \ker P \to C^{\infty}(M; E) \cap \ker P$ has a selfadjoint Fredholm extension $L_T : \mathcal{D} \subset L^2(M; E) \cap \ker P \to L^2(M; E) \cap \ker P$, so it has discrete spectrum contained in \mathbb{R} . (2) If in addition P is hypoelliptic on $\{\nu \in \text{Char}(P) : \sigma(-iL_T)(\nu) > 0\}$, then the spectrum of $-iL_T$ has only finitely many negative elements. Time permitting, we will give applications to the analysis of the *b*-spectrum of an elliptic *b*-complex. (Received February 06, 2006)