1015-49-134William K Allard* (wka@math.duke.edu), Mathematics Department, Duke University, Box
90320, Durham, NC 27708. Some new results on total variation regularization.

Let $s \in \mathbf{L}_{\infty}(\Omega)$, let $\gamma : [0, \infty) \to [0, \infty)$ be zero at zero, nondecreasing and convex and for $f \in \mathbf{L}_{\infty}(\Omega)$ let

$$F(f) = \int_{\Omega} \gamma(|f(x) - s(x)|) \, d\mathcal{L}^n x;$$

 \mathcal{L}^n here is Lebesgue measure on \mathbb{R}^n . In the denoising literature F would be called a *fidelity* term in that it measures deviation from s which could be a noisy grayscale image. Let $\epsilon > 0$ and, for $f \in \mathbf{L}_{\infty}(\Omega)$, let

$$F_{\epsilon}(f) = \epsilon \mathbf{TV}(f) + F(f);$$

here $\mathbf{TV}(f)$ is the total variation of f. A minimizer of F_{ϵ} is called a *total variation regularization of s*. Rudin, Osher and Fatemi and Chan and Esedoglu have studied total variation regularizations of F where $\gamma(y) = y^2$ and $\gamma(y) = y$, $y \in [0, \infty)$, respectively.

In previous work we gave results about the geometric structure of minimizers; this allowed us to construct interesting examples. In this work we extend and sharpen these results and give some more elaborate examples. (Received February 01, 2006)