1015-49-235 Almut Burchard* (almut@math.toronto.edu), University of Toronto, Department of Mathematics, Toronto, ON M5S 2E4, Canada, and Lawrence E. Thomas (let@virginia.edu), University of Virginia, Department of Mathematics, Charlottesville, VA 22904. On an isoperimetric conjecture for a Schrödinger operator depending on the curvature of a loop.
Let C be a smooth closed curve of length 2π in \mathbb{R}^{3}, and let $\kappa(s)$ be its curvature, regarded as a function of arc length. We associate with this curve the one-dimensional Schrödinger operator $H_{C}=-d^{2} / d s^{2}+\kappa^{2}$ acting on the space of square integrable 2π-periodic functions. A natural conjecture is that the lowest spectral value $e(C)$ is bounded below by 1 for any curve (this value is assumed when C is a circle). We study a family of curves that includes the circle and for which $e(C)=1$ as well. We show that the curves in this family are local minimizers, i.e., $e(C)$ can only increase under small perturbations leading away from the family. (Received February 06, 2006)

