1015-60-325 Yehoram Gordon, Alexander Litvak, Carsten Schutt and Elisabeth Werner* (emw2@cwru.edu). On the minimum of several random variables.
For a given sequence of real numbers a_{1}, \ldots, a_{n} we denote the k-th smallest one by $k m_{1 \leq i \leq n} a_{i}$. Let \mathcal{A} be a class of random variables satisfying certain distribution conditions (the class contains $N(0,1)$ Gaussian random variables). We show that there exist two absolute positive constants c and C such that for every sequence of real numbers $0<x_{1} \leq \ldots \leq x_{n}$ and every $k \leq n$ one has

$$
c \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq \mathbb{E} k m_{1 \leq i \leq n}\left|x_{i} \xi_{i}\right| \leq C \ln (k+1) \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
$$

where ξ_{1}, \ldots, ξ_{n} are independent random variables from the class \mathcal{A}. Moreover, if $k=1$ then the left hand side estimate does not require independence of the ξ_{i} 's. We provide similar estimates for the moments of $k m_{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|$ as well. (Received February 08, 2006)

