1016-03-212 Karen M. Lange* (klange@math.uchicago.edu), Mathematics Department, University of Chicago, 5734 S. University Ave., Chicago, IL 60637. Degree Spectra of Homogeneous Models. Following Goncharov, Peretyat'kin, Millar, and others, we study the degree spectrum of a fixed nontrivial homogeneous model satisfying minimal computability conditions. Relativizing the conditions for the Goncharov-Peretyat'kin Effective Extension Property, we say a model \mathcal{A} has a d-basis of types if the types realized in \mathcal{A} are all computable and d can list Δ_0 indices for all types realized in \mathcal{A} . Goncharov, Millar, and Peretyat'kin showed that there exists a homogeneous model \mathcal{A} with a 0-basis such that $\mathbf{0} \notin dSp^e(\mathcal{A})$.

We prove that for a countable homogeneous \mathcal{A} with a **0**'-basis, $dSp^e(\mathcal{A})$ always contains a low degree. We call a degree **d 0**-homogeneous bounding if $\mathbf{d} \in dSp^e(\mathcal{A})$ for all nontrivial homogeneous models \mathcal{A} with **0**-bases. We show that the nonlow₂ Δ_2^0 degrees exactly characterize the **0**-homogenous bounding degrees below **0**'. Finally, given a homogeneous model \mathcal{A} with a **0**-basis, we show that if the theory T of \mathcal{A} has all types computable, then $dSp^e(\mathcal{A})$ contains all non-zero degrees. (Received February 13, 2006)