Lou van den Dries* (vddries@math.uiuc.edu), Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801-2917. On the Number of Arithmetic Steps Needed To Generate the Greatest Common Divisor of Two Integers.
Given integers a, b, define an increasing sequence

$$
G_{0}(a, b) \subseteq G_{1}(a, b) \subseteq \ldots \subseteq G_{n}(a, b) \subseteq \ldots
$$

of finite subsets of \mathbf{Z} as follows: $G_{0}(a, b)=\{0,1, a, b\}$, and

$$
\begin{aligned}
G_{n+1}(a, b)= & G_{n}(a, b) \cup\{\text { sums, differences, integer quotients, remainders, } \\
& \text { and products of two numbers in } \left.G_{n}(a, b)\right\} .
\end{aligned}
$$

Let $g(a, b)$ be the least n such that $\operatorname{gcd}(a, b) \in G_{n}(a, b)$. There is a very easy double logarithmic upper bound (logarithms to base 2):

$$
g(a, b) \leq 4 \log \log a \quad(a>b>1)
$$

This talk will focus on a more difficult lower bound:
There are infinitely many (a, b) with $a>b>1$ such that

$$
g(a, b) \geq \frac{1}{4} \sqrt{\log \log a}
$$

The proof uses arithmetic properties of integer solutions to the Pell equation $x^{2}-2 y^{2}=1$. There are also connections, via model theory, to irrationality and transcendence. Motivation for finding such bounds comes from joint work with Yiannis Moschovakis on arithmetic complexity. I will mention some open problems in this area. (Received February 13, 2006)

