1016-11-317 Michael P. Knapp* (mpknapp@loyola.edu), Mathematical Sciences Department, Loyola College, 4501 North Charles Street, Baltimore, MD 21210-2699. Systems of many diagonal forms of different degrees over p-adic fields.
In this talk we consider systems of diagonal forms with integer coefficients in which each form has a different degree. It is known that every such system has a nontrivial zero in every p-adic field \mathbb{Q}_{p} provided that the number of variables is sufficiently large in terms of the degrees. A theorem due to Lewis \& Montgomery shows that the number of variables required grows at least exponentially as the degrees and number of forms increase. However, a theorem of Ax \& Kochen says that if p is sufficiently large then only a small polynomial bound is required to ensure that nontrivial zeros exist over \mathbb{Q}_{p}. In this talk we explore the question of how small we can make the prime p and still have a polynomial bound. In particular, we show that we may allow p to be smaller than the largest of the degrees. (Received February 14, 2006)

