Genkai Zhang* (genkai@math.chalmers.se), Dept. of Math., Chalmers Univ. of Tech. and Gothenburg Univ., S-412 96 Gothenburg, Sweden. Nonsymmetric Jacobi and Wilson polynomials. Consider a root system of type BC 1 on the real line R with general positive multiplicities. The Cherednik-Opdam transform defines a unitary operator from an $L 2$-space on R to a $L 2$-space of $C 2$-valued functions on $R+$ with the Harish-Chandra measure. By introducing a weight function of the form $\cosh (\mathrm{t}) \tanh 2 \mathrm{k} t$ on R we find an orthogonal basis for the L 2 -space on R consisting of even and odd functions expressed in terms of the Jacobi polynomials (for each fixed and k). We find a Rodrigues type formula for the functions in terms of the Cherednik operator. We compute explicitly their Cherednik-Opdam transforms. We discover thus a new family of C 2 -valued orthogonal polynomials. In the special case when $\mathrm{k}=0$ the even polynomials become Wilson polynomials, and the corresponding result was proved earlier by Koornwinder. (Received February 15, 2006)

