1024-05-173

Richard Anstee, Balin Fleming, Zoltán Füredi and Attila Sali* (sali@math.sc.edu). Color critical hypergraphs and forbidden configurations.

Lovász proved that

$$|\mathcal{E}| \le \binom{n}{k-1}$$

for a 3-color critical k-uniform hypergraph. We prove

Theorem 1. Let $\mathcal{E} \subseteq {\binom{[m]}{k}}$ be a k-uniform set system on |X| = m Let us fix an ordering E_1, E_2, \ldots, E_t of \mathcal{E} and a prescribed partition $A_i \cup B_i = E_i$ $(A_i \cap B_i = \emptyset)$ for each member of \mathcal{E} . Assume that for all $i = 1, 2, \ldots, t$ there exists a partition $C_i \cup D_i = X$ $(C_i \cap D_i = \emptyset)$, such that $E_i \cap C_i = A_i$ and $E_i \cap D_i = B_i$, but $E_j \cap C_i \neq A_j$ and $E_j \cap C_i \neq B_j$ for all j < i. Then

$$t \le \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}$$

Theorem 1 was motivated by the following. Let F be a $k \times l$ 0-1 matrix, then forb(m, F) is the maximum n such that there exists an $m \times n$ simple matrix A such that no column and/or row permutation of F is a submatrix of A. Let K_k denote the full $k \times 2^k$ simple 0-1 matrix.

Theorem 2. Let F be contained in $F_B = [K_k | t \cdot (K_k - B)]$ for an $k \times (k+1)$ matrix B consisting of one column of each possible column sum. Then forb $(m, F) = O(m^{k-1})$.

(Received January 08, 2007)