1024-05-173 Richard Anstee, Balin Fleming, Zoltán Füredi and Attila Sali* (sali@math.sc.edu). Color critical hypergraphs and forbidden configurations.
Lovász proved that

$$
|\mathcal{E}| \leq\binom{ n}{k-1}
$$

for a 3 -color critical k-uniform hypergraph. We prove
Theorem 1. Let $\mathcal{E} \subseteq\binom{[m]}{k}$ be a k-uniform set system on $|X|=m$ Let us fix an ordering $E_{1}, E_{2}, \ldots E_{t}$ of \mathcal{E} and a prescribed partition $A_{i} \cup B_{i}=E_{i}\left(A_{i} \cap B_{i}=\emptyset\right)$ for each member of \mathcal{E}. Assume that for all $i=1,2, \ldots, t$ there exists a partition $C_{i} \cup D_{i}=X\left(C_{i} \cap D_{i}=\emptyset\right)$, such that $E_{i} \cap C_{i}=A_{i}$ and $E_{i} \cap D_{i}=B_{i}$, but $E_{j} \cap C_{i} \neq A_{j}$ and $E_{j} \cap C_{i} \neq B_{j}$ for all $j<i$. Then

$$
t \leq\binom{ m}{k-1}+\binom{m}{k-2}+\ldots+\binom{m}{0}
$$

Theorem 1 was motivated by the following. Let F be a $k \times l 0-1$ matrix, then forb (m, F) is the maximum n such that there exists an $m \times n$ simple matrix A such that no column and/or row permutation of F is a submatrix of A. Let K_{k} denote the full $k \times 2^{k}$ simple 0-1 matrix.
Theorem 2. Let F be contained in $F_{B}=\left[K_{k} \mid t \cdot\left(K_{k}-B\right)\right]$ for an $k \times(k+1)$ matrix B consisting of one column of each possible column sum. Then forb $(m, F)=O\left(m^{k-1}\right)$.
(Received January 08, 2007)

