1024-05-178 Vasyl Dmytrenko (vdmytr@math.temple.edu), Philadelphia, PA 19122, Felix Lazebnik* (lazebnik@math.udel.edu), Newark, DE 19716, and Raymond Viglione (rviglion@cougar.kean.edu), Union, NJ 07083. On the Isomorphisms of Monomial Graphs.
Let q be a prime power, \mathbb{F}_{q} be the field of q elements, and k, m be positive integers. A bipartite graph $G=G_{q}(k, m)$ is defined as follows. The vertex set of G is a union of two copies P and L of two-dimensional vector spaces over \mathbb{F}_{q}, with two vertices $(p)=\left(p_{1}, p_{2}\right) \in P$ and $[l]=\left[l_{1}, l_{2}\right] \in L$ being adjacent if and only if $p_{2}+l_{2}=p_{1}^{k} l_{1}^{m}$. We prove that for each q, graphs $G_{q}(k, m)$ and $G_{q}^{\prime}\left(k^{\prime}, m^{\prime}\right)$ are isomorphic if and only if $q=q^{\prime}$ and the multisets $\{\operatorname{gcd}(k, q-1), \operatorname{gcd}(m, q-1)\}$ and $\left\{\operatorname{gcd}\left(k^{\prime}, q-1\right), \operatorname{gcd}\left(m^{\prime}, q-1\right)\right\}$ are equal. The proof is based on counting the number of complete bipartite subgraphs in the graphs. (Received January 08, 2007)

