1024-05-208

R Anstee, Vancouver, **B** Fleming, Vancouver, **Z** Furedi^{*} (z-furedi@math.uiuc.edu), 1409 W Green Str, Urbana, IL 61801, and **A** Sali, Budapest, Hungary. *Color critical hypergraphs and forbidden configurations.*

A k-uniform hypergraph (V, \mathcal{E}) is 3-color critical if it is not 2-colorable, but for all $E \in \mathcal{E}$ the hypergraph $(V, \mathcal{E} \setminus \{E\})$ is 2-colorable. Lovász proved in 1976, that

$$\mathcal{E}| \le \binom{n}{k-1}$$

for a 3-color critical k-uniform hypergraph. Here we prove the following generalization.

Let $\mathcal{E} \subseteq {\binom{[m]}{k}}$ be a k-uniform set system on an underlying set X of m elements. Let us fix an ordering E_1, E_2, \ldots, E_t of \mathcal{E} and a prescribed partition $A_i \cup B_i = E_i$ $(A_i \cap B_i = \emptyset)$ for each member of \mathcal{E} . Assume that for all $i = 1, 2, \ldots, t$ there exists a partition $C_i \cup D_i = X$ $(C_i \cap D_i = \emptyset)$, such that $E_i \cap C_i = A_i$ and $E_i \cap D_i = B_i$, but $E_j \cap C_i \neq A_j$ and $E_j \cap C_i \neq B_j$ for all j < i. (That is, the *i*th partition cuts the *i*th set as it is prescribed, but does not cut any earlier set properly.) Then

$$t \leq \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}.$$

This leads to a sharpening of Sauer's bound for forb(m, F), where F is a $k \times l$ 0-1 matrix. (Received January 09, 2007)