Let K denote a field and let V denote a vector space over K with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ that satisfy the following:

1. There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A^{*} is irreducible tridiagonal;
2. There exists a basis for V with respect to which the matrix representing A^{*} is diagonal and the matrix representing A is irreducible tridiagonal.

It is known that the Leonard pairs are in bijection with the orthogonal polynomials from the terminating branch of the Askey scheme. This branch includes the q-Racah polynomials and their relatives. In this talk we consider a mild generalization of a Leonard pair called a tridiagonal pair. We also consider the q-tetrahedron algebra, which can be viewed as a q-analog of the three-point $\mathfrak{s l}_{2}$ loop algebra. We obtain a tridiagonal pair from each finite-dimensional irreducible module for the q-tetrahedron algebra. (Received February 13, 2007)

