1038-14-191 **Krishna C Hanumanthu*** (krishna@math.missouri.edu), Department of Mathematics, University of Missouri, Columbia, MO 65211. *Toroidalization of Locally Toroidal Morphisms from N-folds to Surfaces.*

Let X and Y be nonsingular varieties over an algebraically closed field k of characteristic zero. A toroidal structure on X is a simple normal crossing divisor D_X on X. Let D_X and D_Y be toroidal structures on X and Y. A dominant morphism $f: X \to Y$ is toroidal (with respect to the toroidal structures D_X and D_Y) if for all closed points $p \in X$, f is isomporphic to a toric morphism of toric varieties at p and f(p) (specified by the toroidal structures D_X and D_Y).

Let $f : X \to Y$ be a dominant morphism. Suppose that there exist finite open covers $\{U_i\}$ and $\{V_i\}$ of X and Y respectively such that $f(U_i) \subset V_i$ and the restricted morphisms $f : U_i \to V_i$ are toroidal for all i. f is then called *locally toroidal*.

Given a locally toroidal morphism $f: X \to Y$, Dale Cutkosky asked whether there exist sequences of blow ups with nonsingular centers $\pi: Y_1 \to Y$ and $\pi_1: X_1 \to X$ so that the induced map $f_1: X_1 \to Y_1$ is toroidal.

In this paper, we answer the question in the affirmative when Y is a surface and X has arbitrary dimension. (Received February 09, 2008)