orthogonal latin square construction for orientable hamiltonian embeddings of $K_{n, n, n}$. Preliminary report.
An orientable hamiltonian embedding of a graph G is a drawing of G on an orientable surface such that no edges cross and the boundary of every face is a hamilton cycle. In this talk we develop a connection between latin squares and orientable hamiltonian embeddings of the complete tripartite graph $K_{n, n, n}$. In particular we show that a pair of orthogonal latin squares of order n with one additional property yields an orientable hamiltonian embedding of $K_{n, n, n}$ that is 2-colorable and has faces with some additional structure. The presentation concludes with a construction for such latin squares when $n=2 p q$, where $p, q \geq 2$. (Received September 20, 2011)

