1077-05-190 Korinne Dobosh*, Department of Mathematics, Montclair State University, Montclair, NJ 07043, and Samuel Kennedy, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623. Rank numbers of rook's graphs.
A $k$-ranking of a graph $G$ is a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$ such that if $f(u)=f(v)$ then every $u-v$ path contains a vertex $w$ such that $f(w)>f(u)$. The rank number of $G$, denoted by $\chi_{r}(G)$, is the minimum $k$ such that a $k$-ranking exists for $G$. Many papers have appeared in the topic of ranking, and several of them investigated the rank number of certain classes of Cartesian products. The rook's graph, denoted by $K_{n} \times K_{m}$, is the Cartesian product of complete graphs $K_{n}$ and $K_{m}$. This graph represents the moves of a rook on an $n \times m$ chess board. This graph contains a multitude of paths between any given vertices, and we must consider all paths between two vertices to ensure a labeling satisfies the ranking condition. We will discuss our results, including an explicit formula for $\chi_{r}\left(K_{n} \times K_{m}\right)$ for certain m , as well as new bounds for $\chi_{r}\left(K_{n} \times K_{m}\right)$ for all n and m , and results involving the structure of all minimal rankings of $K_{n} \times K_{m}$. (Received August 10, 2011)

