1077-05-191 Daniel S. Shetler (dshetler12@my. whitworth.edu), Department of Mathematics, Whitworth University, Spokane, WA 99251, and Michael Wurtz*, Department of Mathematics, Northwestern University, Evanston, IL 60208. On Some Multicolor Ramsey Numbers Involving $K_{3}+e$ and $K_{4}-e$.
The Ramsey number $R\left(G_{1}, G_{2}, G_{3}\right)$ is the smallest n such that for all 3-colorings of the edges of K_{n} there is a monochromatic G_{1} in the first color, G_{2} in the second color, or G_{3} in the third color. We study the bounds on various 3-color Ramsey numbers $R\left(G_{1}, G_{2}, G_{3}\right)$, where $G_{i} \in\left\{K_{3}, K_{3}+e, K_{4}-e, K_{4}\right\}$. The minimal and maximal combinations of G_{i} 's correspond to the classical Ramsey numbers $R_{3}\left(K_{3}\right)$ and $R_{3}\left(K_{4}\right)$, respectively, where $R_{3}(G)=R(G, G, G)$. Here, we focus on the much less studied combinations between these two cases.

Through computational and theoretical means we establish that $R\left(K_{3}, K_{3}, K_{4}-e\right)=17$, and by construction we raise the lower bounds on $R\left(K_{3}, K_{4}-e, K_{4}-e\right)$ and $R\left(K_{4}, K_{4}-e, K_{4}-e\right)$. For some G and H it was known that $R\left(K_{3}, G, H\right)=$ $R\left(K_{3}+e, G, H\right)$; we prove this is true for several more cases including $R\left(K_{3}, K_{3}, K_{4}-e\right)=R\left(K_{3}+e, K_{3}+e, K_{4}-e\right)$.

Ramsey numbers generalize to more colors, such as in the famous 4-color case of $R_{4}\left(K_{3}\right)$, where monochromatic triangles are avoided. It is known that $51 \leq R_{4}\left(K_{3}\right) \leq 62$. We prove the surprising theorem stating that if $R_{4}\left(K_{3}\right)=51$ then $R_{4}\left(K_{3}+e\right)=52$, otherwise $R_{4}\left(K_{3}+e\right)=R_{4}\left(K_{3}\right)$. (Received August 10, 2011)

