1077-05-2215 Jeong-Ok Choi (jeong.choi@trincoll.edu), Mathematics Department, Trinity College, Hartford, 06106, John P. Georges (john.georges@trincoll.edu), Mathematics Department, Trinity College, Hartford, CT 06106, David W. Mauro* (david.mauro@trincoll.edu), Mathematics Department, Trinity College, Hartford, CT 06106, and Yan Wang (wangy@millsaps.edu), Department of Mathematics, Millsaps College, Jackson, MS 39210. On real number labellings and graph invertibility.
For non-negative real x_{0} and simple graph $G, \lambda_{x_{0}, 1}(G)$ is the minimum span over all labellings that assign real numbers to the vertices of G such that adjacent vertices receive labels that differ by at least x_{0} and vertices at distance two receive labels that differ by at least 1 . In this paper, we introduce the concept of λ-invertibility: G is λ-invertible if and only if for all positive $x, \lambda_{x, 1}(G)=x \lambda_{\frac{1}{x}, 1}\left(G^{c}\right)$. We explore the conditions under which a graph is λ-invertible, and apply the results to the calculation of the function $\lambda_{x, 1}(G)$ for certain λ-invertible graphs G. We give families of λ-invertible graphs, including certain Kneser graphs, line graphs of complete multipartite graphs, and self-complementary graphs. We also derive the complete list of all λ-invertible graphs with maximum degree 3. (Received September 21, 2011)

