1077-05-2264 Corey M Manack* (cmanack@amherst.edu), 58 S East St, Apt 2, Amherst, MA 01002. A new method for comparing chains of order statistics. Preliminary report.
Fix $k \leq m \leq n$, and let $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}$ be continuous, independent and identically distributed random variables. Inspired by dice resolutions from the RISK board game, we derive a new probability distribution that compares the top k performers from the sets $X=\left\{X_{1}, \ldots, X_{m}\right\}, Y=\left\{Y_{1}, \ldots, Y_{n}\right\}$. Specifically, we find, for each l between 0 and k, the probability that there are exactly l instances when the i-th top performer from X is greater than the i-th top performer from Y. By virtue of uniformity, we may recast this method of comparison into counting lattice paths of a certain type, invoking the Chung-Feller Theorem and Ballot Numbers in our derivation. Salient and surprising features of the distribution will be discussed, as well as possible applications, if time permits. (Received September 21, 2011)

