1077-05-2358 Rigoberto Florez (florezr@uscsumter.edu), Division of Mathematics, Science, and Eng., University of South Carolina Sumter, Sumter, SC 29150-2498, and Darren A Narayan* (dansma@rit.edu), School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623-5604. Maximizing the number of edges in optimal k-rankings.
A ranking is a vertex coloring where if two vertices have the same label any path connecting them contains a vertex with a larger label. The rank number of a graph is smallest number of colors that can be used in a ranking. Given a graph G we consider the maximum number of edges that may be added to G without changing the rank number. Here we investigate the problem for paths, cycles, complete multipartite graphs, and the union of two complete graphs joined by a single edge. For these families of graphs we provide an explicit characterization of which edges change the rank number when added to G, and which edges do not. (Received September 22, 2011)

