In a convex n-gon, let $d_{1}>d_{2}>\cdots$ denote the set of all distances between pairs of vertices, and let m_{i} be the number of pairs of vertices at distance d_{i} from one another. Erdős, Lovász, and Vesztergombi conjectured that $m_{1}+m_{2}+\cdots m_{k} \leq k \cdot n$. Using a new computational approach, we prove their conjecture when $k \leq 4$ and n is large; we also make some progress for arbitrary k by proving an upper bound of $(2 k-1) \cdot n$. Our main approach revolves around a few known facts about distances, together with a computer program that searches all small configurations of distances generated by two disjoint intervals. We thereby obtain other new bounds such as $m_{3} \leq 3 n / 2$ for large n. (Received September 22, 2011)

