Joshua Hanes* (Jhanes@as.muw.edu), Mississippi University for Women, 1100 College St., MUW-100, Columbus, MS 39701, and Tristan Denley, Austin Peay State University, 601 College St., Clarksville, TN 37044. Modular-Distance Labelings of Graphs. Preliminary report.
In [5] Ferrara, Kohayakawa, and Rödl introduced a way to represent graphs using vertex labels and distances. Here we will consider a modification of this construction, which we shall call modular distance graphs. Let V be a non-empty set, $\Phi: V \mapsto Z^{+}$be an injective function, and $D_{m} \subseteq Z^{+} \times P$ where P is the set of prime integers. Then the modular distance graph $G\left(\Phi, D_{m}\right)$ is the graph with vertex set V and edge set defined by $(u, v) \in E(G) \Longleftrightarrow|\Phi(u)-\Phi(v)| \equiv a(\bmod p)$ for some $u, v \in V$ and $(a, p) \in D_{m}$.

We shall consider the parameter $D_{m}(G)=\min _{G(\Phi, D m) \cong G}|D m|$, showing that for any graph with maximum degree Δ $D_{m}(G) \leq \frac{1}{2} \Delta+\left(O\left(\Delta^{\frac{2}{3}}(\log \Delta)^{\frac{1}{3}}\right)\right)$ and that there graphs for which $D_{m}(G)>\frac{5 \Delta}{12}$. We also show that $D_{m}(G) \leq 20$ when G is planar. (Received September 22, 2011)

