1077-05-2548

Joshua Hanes* (Jhanes@as.muw.edu), Mississippi University for Women, 1100 College St., MUW-100, Columbus, MS 39701, and Tristan Denley, Austin Peay State University, 601 College St., Clarksville, TN 37044. *Modular-Distance Labelings of Graphs.* Preliminary report.

In [5] Ferrara, Kohayakawa, and Rödl introduced a way to represent graphs using vertex labels and distances. Here we will consider a modification of this construction, which we shall call **modular distance graphs**. Let V be a non-empty set, $\Phi: V \mapsto Z^+$ be an injective function, and $D_m \subseteq Z^+ \times P$ where P is the set of prime integers. Then the **modular distance graph** $G(\Phi, D_m)$ is the graph with vertex set V and edge set defined by $(u, v) \in E(G) \iff |\Phi(u) - \Phi(v)| \equiv a \pmod{p}$ for some $u, v \in V$ and $(a, p) \in D_m$.

We shall consider the parameter $D_m(G) = \min_{G(\Phi,Dm)\cong G} |Dm|$, showing that for any graph with maximum degree Δ $D_m(G) \leq \frac{1}{2}\Delta + (O(\Delta^{\frac{2}{3}}(\log \Delta)^{\frac{1}{3}}))$ and that there graphs for which $D_m(G) > \frac{5\Delta}{12}$. We also show that $D_m(G) \leq 20$ when G is planar. (Received September 22, 2011)