1077-11-1268 Zev Klagsbrun* (klagsbru@math.wisc.edu), Dept. of Mathematics, 480 Lincoln Dr., 313 Van Vleck Hall, Madison, WI 53703. The Distribution of 2-Selmer Ranks of Quadratic Twists of Elliptic Curves.
Given an elliptic curve E defined over a number field K, we can ask what proportion of quadratic twists of E have 2Selmer rank r for any non-negative integer r. The Delaunay heuristics combined with work of Dokchitser and Dokchitser suggested a conjecture for this distribution that was verified by work of Heath-Brown, Swinnerton-Dyer, and Kane for elliptic curves over \mathbb{Q} with $E(\mathbb{Q})[2] \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We present new results for elliptic curves with $E(K)[2]=0$ and with $E(K)[2] \simeq \mathbb{Z} / 2 \mathbb{Z}$. I will present joint work of Mazur, Rubin, and myself supporting the conjecture for curves with $E(K)[2]=0$. Additionally, I will present some new results of my own for curves with $E(K)[2] \simeq \mathbb{Z} / 2 \mathbb{Z}$, including some surprising results that conflict with the conjecture. (Received September 18, 2011)

