Enrique Trevino* (etrevin1@swarthmore.edu), 510 Elm Ave, Swarthmore, PA 19081. On the maximum number of consecutive integers on which a character is constant.
Let χ be a non-principal Dirichlet character to the prime modulus p. In 1963, Burgess showed that the maximum number of consecutive integers H for which χ remains constant is $O\left(p^{1 / 4} \log p\right)$. This is the best known asymptotic upper bound on this quantity. Recently, McGown proved an explicit version of Burgess's theorem, namely that $H<7.06 p^{1 / 4} \log p$ for $p \geq 5 \cdot 10^{18}$. By improving an inequality of Burgess on character sums and using some ideas of Norton, we were able to improve the result to $H<1.55 p^{1 / 4} \log p$ whenever $p \geq 2.5 \cdot 10^{9}$, and $H<3.64 p^{1 / 4} \log p$ for all p. (Received September 20, 2011)

