1077-11-1884 Fedor A Bogomolov* (bogomolo@cims.nyu.edu), 2 Washington Square Village 16 R, New York, NY 10012. Elliptic division and unramified correspondence.

Every elliptic curve E over k (let us $chark \neq 2$) defines a subset $P_{E,tors}$ in a projective line corresponding to the the image of torsion points of E if we consider the quotient of E by involution and define the subset of two-torsion points as the set of invariant points under involution. The set $P_{E,tors}$ considered modulo projective automorphisms pf P^1 characterizes the curve E. Consider the following enlargement of $P_{E,tors}$. Take any four points from $P_{E,tors}$ and add all the images of corresponding elliptic curve. Then consider the new set and repeat this operation infinitely many times. Theorem The resulting set for a curve E defined over a number field is equal to the subset $P^1(K)$ where K depends on the initial curve E. This result is applied to the construction of unramified correspondences between curves defined over number fields. (Received September 21, 2011)