The classical ring of integer-valued polynomials $\operatorname{Int}(\mathbb{Z})$ consists of the polynomials in $\mathbb{Q}[x]$ that map \mathbb{Z} into \mathbb{Z}. In this talk, we consider a generalization of integer-valued polynomials where the polynomials act on \mathbb{Z}-algebras such as a ring of algebraic integers or the ring of $n \times n$ matrices with entries in \mathbb{Z}. Specifically, given a \mathbb{Z}-algebra A, we define $\operatorname{Int}_{A}(\mathbb{Z})$ to be the set of polynomials in $\mathbb{Q}[x]$ that map A into A; then, $\operatorname{Int}_{A}(\mathbb{Z})$ is usually a proper subring of $\operatorname{Int}(\mathbb{Z})$. The principal question we consider is whether or not $\operatorname{Int}_{A}(\mathbb{Z})$ is a Prüfer domain. We will demonstrate that when A is a finite-dimensional \mathbb{Z}-algebra, $\operatorname{Int}_{A}(\mathbb{Z})$ need not be a Prüfer domain, but the integral closure of $\operatorname{Int}_{A}(\mathbb{Z})$ is always a Prüfer domain. (Received September 14, 2011)

