1077-15-118

Martin S. Copenhaver* (copenhaver@gatech.edu), Cortney Logan (clogan@students.stonehill.edu), Kyanne Mayfield (mayfield13@up.edu) and Jonathan Sheperd (jsheperd@nd.edu). Diagram vectors of frames and the tight frame scaling problem.

A frame is a redundant spanning set. A tight frame is a generalization of an orthonormal basis. A notion of digram vectors associated to frames in \mathbb{R}^2 has yielded many results about tight frames in \mathbb{R}^2 . We provide a generalized notion of diagram vectors which allows for significant developments in the theory of tight frames in finite dimensions. In particular, we completely answer the *tight frame scaling problem* - that is, given a set of unit vectors $\{f_i\}_{i=1}^k$ in a finite dimensional Hilbert space \mathcal{H}_n , when do there exist positive scalars c_1, \ldots, c_k so that $\{c_i f_i\}_{i=1}^k$ is a tight frame? When such scalings do exist, we provide a means of determining coefficients using a specific formulation for \mathbb{R}^2 as well as a general approach for \mathcal{H}_n using techniques from computational geometry. (Received July 28, 2011)