Jerry L. Bona, Jonathan Cohen* (jcohen@depaul.edu) and Gang Wang. Global Well Posedness for a system of KdV-type Equations with Coupled Quadratic nonlinearities.
In this talk, coupled systems

$$
\begin{array}{r}
u_{t}+u_{x x x}+P(u, v)_{x}=0 \\
v_{t}+v_{x x x}+Q(u, v)_{x}=0
\end{array}
$$

of KdV-type are considered, where $u=u(x, t), v=v(x, t)$ and $x, t \in \mathbb{R}$. Here, subscripts connote partial differentiation and P and Q are quadratic polynomials in the variables u and v. Attention is given to the pure initial-value problem in which $u(x, t)$ and $v(x, t)$ are both specified at $t=0$, viz.

$$
u(x, 0)=u_{0}(x) \text { and } v(x, 0)=v_{0}(x)
$$

for $x \in R$. Under suitable conditions on P and Q, global well posedness of this problem is established for initial data in the L^{2}-based Sobolev spaces $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for any $s>-\frac{3}{4}$. (Received September 21, 2011)

