1077-35-2013

 $\textbf{Jerry L. Bona, Jonathan Cohen* (jcohen@depaul.edu) and Gang Wang. \textit{Global Well}}$

Posedness for a system of KdV-type Equations with Coupled Quadratic nonlinearities.

In this talk, coupled systems

$$u_t + u_{xxx} + P(u, v)_x = 0,$$

 $v_t + v_{xxx} + Q(u, v)_x = 0,$

of KdV-type are considered, where u = u(x,t), v = v(x,t) and $x, t \in \mathbb{R}$. Here, subscripts connote partial differentiation and P and Q are quadratic polynomials in the variables u and v. Attention is given to the pure initial-value problem in which u(x,t) and v(x,t) are both specified at t = 0, viz.

$$u(x,0) = u_0(x)$$
 and $v(x,0) = v_0(x)$

for $x \in R$. Under suitable conditions on P and Q, global well posedness of this problem is established for initial data in the L^2 -based Sobolev spaces $H^s(\mathbb{R}) \times H^s(\mathbb{R})$ for any $s > -\frac{3}{4}$. (Received September 21, 2011)