1077-51-65

Adaeze Christiana Anyaegbunam^{*} (adaezeanyaegbunam@rocketmail.com), Department of Mathematics and Statistics, University of Port Harcourt, Port harcourt, Nigeria. *Complete* geometry on a Riemannian A-module. Sylvester's theorem.

Abstract

As part of more results from my recent PhD thesis titled: **Geometric algebra via sheaf theory: A view towards** symplectic geometry, which serves as a corner stone for Abstract Geometric Algebra and this paper, and building on prior joint works done by Mallios and Ntumba, we study Sylvester's Theorem via sheaf theory. Given a *Riemannian* \mathcal{A} -module \mathcal{E} equipped with an \mathcal{A} -metric ϕ that is a symmetric and orthogonally convenient pairing over an ordered algebraized space (X, \mathcal{A}) . Then ϕ is \mathcal{A} -isometric to $r[1] \perp s[-1]$. Thus, the number r is invariant and it does not, in general, describe the geometry of \mathcal{E} completely. It does so, however, in one important case, which is when every element of \mathcal{A} is a square of an element of \mathcal{A} . This holds, for instance, if $\mathcal{A} := \mathcal{P} \cup -\mathcal{P}$, the ordered PID **R**-algebraized space. There is an analog of this result in the setting of vector spaces. (Received July 15, 2011)