1041-11-217 Sander R. Dahmen* (sanderdahmen@gmail.com), Department of Mathematics, The University of British Columbia, 1984 Mathematics Road, Vancouver, B.C. V6T 1Z2, Canada. On the Diophantine equation $a x^{2}+b y^{3}=c z^{5}$. Preliminary report.
For given nonzero integers a, b, c we consider the Diophantine equation

$$
a x^{2}+b y^{3}=c z^{5}, \quad \operatorname{gcd}(x, y, z)=1
$$

in the unknown integers x, y, z. We describe a new algorithm to find all (parameterized) solutions to the equation above. Using this algorithm we are in particular able to show that there exist pairwise coprime nonzero integers a, b, c such that the equation has no solutions, this answers an open question due to Darmon and Granville. (Received August 11, 2008)

