1041-60-184 F. Alberto grunbaum* (grunbaum@math.berkeley.edu), Alberto Grunbaum, Math Dept UC Berkeley, berkeley, CA 94720. Matrix valued orthogonal polynomials and inverse problems for networks.
Consider a network with known topology, and on it consider a Markov chain with nearest neighbour UNKOWN transition probability matrix P. An extension of the well known Karlin-McGregor expression for the n-step transition matrix, in terms of Krein matrix valued orthogonal polynomials, allows one to pose and in some cases solve the INVERSE PROBLEM of determining P from certain "boundary measurements". This can be seen as a discrete version of the problem of diffuse tomography that originates in medical and geophysical imaging. (Received August 11, 2008)

