1041-60-36 Paweł Hitczenko* (phitczenko@math.drexel.edu), Department of Mathematics, Drexel University, Philadelphia, PA 19104, and Jacek Wesołowski, Wydział MiNI, Politechnika Warszawska, 00-661 Warszawa, Poland. Tails of perpetuities.
Perpetuity is a random variable R satisfying

$$
R \stackrel{d}{=} Q+M R,
$$

where (Q, M) are random variables independent of R. Alternatively, R is a limit in distribution of a sequence $\left(R_{n}\right)$ satisfying

$$
\begin{equation*}
R_{n}=Q_{n}+M_{n} R_{n-1}, n \geq 1 \tag{1}
\end{equation*}
$$

where $\left(Q_{n}, M_{n}\right)$ are iid copies of $(Q, M),\left(Q_{n}, M_{n}\right)$ is independent of R_{n-1}, and R_{0} is arbitrary. Accordingly, R may be written as

$$
\begin{equation*}
R \stackrel{d}{=} \sum_{i=1}^{\infty} Q_{i} \prod_{j=1}^{i-1} M_{j} \tag{2}
\end{equation*}
$$

Conditions guaranteeing convergence in (1) and (2) have been given by Kesten. Equations like (1) are ubiquitous in applied mathematics; an example closely related to the theme of this session is the analysis of Hoare's FIND algorithm.

The main focus of research has been on the tail behavior of R :

$$
P(|R| \geq x), \quad \text { as } \quad x \rightarrow \infty .
$$

If $P(|M|>1)>0$ then as Kesten showed, R is always heavy-tailed. The case $0 \leq|M| \leq 1$ is much less understood. Goldie and Grübel showed that in that case the tails of R are no heavier than exponential and if $|M|$ behaves near 1 as a uniform random variable then they are Poissonian.

In this talk we will present further results about the tails of R and their connection to the behavior of $|M|$ near 1. (Received July 18, 2008)

