Lorenzo Traldi* (traldil@lafayette.edu), Department of Mathematics, Lafayette College, Easton, PA 18042, and Brian Kronenthal (kronentb@lafayette.edu), Department of
Mathematics, Lafayette College, Easton, PA 18042. The prevalence of "paradoxical" dice. II. Tied dice. Preliminary report.
A generalized die is a list $\left(x_{1}, \ldots, x_{n}\right)$ of integers. For integers $n \geq 1, a \leq b$ and s let $D(n, a, b, s)$ be the set of all dice with $a \leq x_{1} \leq \ldots \leq x_{n} \leq b$ and $\sum x_{i}=s$. Two dice X and Y are tied if the number of pairs (i, j) with $x_{i}<y_{j}$ equals the number of pairs (i, j) with $x_{i}>y_{j}$. We prove the following: with one exception (unique up to isomorphism), if $X \neq Y \in D(n, a, b, s)$ are tied dice neither of which ties all other elements of $D(n, a, b, s)$ then there is a third die $Z \in D(n, a, b, s)$ which ties neither X nor Y. (Received December 29, 2006)

