1026-05-22 Lorenzo Traldi* (traldil@lafayette.edu), Department of Mathematics, Lafayette College, Easton, PA 18042, and Brian Kronenthal (kronentb@lafayette.edu), Department of Mathematics, Lafayette College, Easton, PA 18042. The prevalence of "paradoxical" dice. II. Tied dice. Preliminary report.

A generalized die is a list $(x_1, ..., x_n)$ of integers. For integers $n \ge 1$, $a \le b$ and s let D(n, a, b, s) be the set of all dice with $a \le x_1 \le ... \le x_n \le b$ and $\sum x_i = s$. Two dice X and Y are tied if the number of pairs (i, j) with $x_i < y_j$ equals the number of pairs (i, j) with $x_i > y_j$. We prove the following: with one exception (unique up to isomorphism), if $X \ne Y \in D(n, a, b, s)$ are tied dice neither of which ties all other elements of D(n, a, b, s) then there is a third die $Z \in D(n, a, b, s)$ which ties neither X nor Y. (Received December 29, 2006)