Jose A. Rodriguez* (jose.rodriguez@liu.edu), Computer Science Dept LLC 206, Long Island University - Brooklyn Campus, 1 University Plaza, Brooklyn, NY 11201. On the almost-regularity of dense graphs with a maximum number of spanning trees.
Let $\Gamma(n, e)$ be the class of all simple graphs on n vertices and e edges, and let $t(G)$ and $\tau(G)$ denote the number of spanning trees and the number of triangles of graph $G . G \in \Gamma(n, e)$ is t-optimal if $t(G) \geq t\left(G^{\prime}\right)$ for all $G^{\prime} \in \Gamma(n, e)$. $G \in \Gamma(n, e)$ is almost-regular- τ-min if G is almost regular and $\tau(G)<=\tau\left(G^{\prime}\right)$ for all almost-regular $G^{\prime} \in \Gamma(n, e)$ We show that for $K>0$ there is a positive integer $N(K)$ such that, for $n>N(K)$ and $e>n(n-1) / 2-K n$, every t-optimal graph in $\Gamma(n, e)$ is almost-regular- τ-min. (Received January 15, 2007)

