1026-05-74 Mike Daven* (daven@msmc.edu), Newburgh, NY 12550. Multidesigns in graph products. Preliminary report.

If the edges of a graph H can be partitioned into copies of a subgraph G, then we say G divides H. Such a partition is called a G-decomposition or G-design.

The graph multidecomposition problem is a variation of the above. By a graph-pair of order t, we mean two nonisomorphic graphs G_1 and G_2 on t non-isolated vertices for which $G_1 \cup G_2 \cong K_t$ for some integer $t \ge 4$. Given a graph-pair (G_1, G_2) , if the edges of H can be partitioned into copies of G_1 and G_2 with at least one copy of G_1 and one copy of G_2 , then we say (G_1, G_2) divides H. We refer to this partition as a (G_1, G_2) -multidecomposition or (G_1, G_2) -multidesign.

We will discuss the multidecomposition problem for the cartesian product and tensor product of paths, cycles, and complete graphs. (Received February 13, 2007)