Peter Pivovarov* (ppivovarov@math.ualberta.ca), 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. Volume thresholds for Gaussian and spherical random polytopes.
Let g be a Gaussian random vector in \mathbb{R}^{n}. Let $N=N(n)$ be a positive integer and denote by K_{N} the convex hull of N independent copies of g. Fix $R>0$ and consider the ratio of volumes $V_{N}:=\mathbb{E} \operatorname{vol}\left(K_{N} \cap R B_{2}^{n}\right) / \operatorname{vol}\left(R B_{2}^{n}\right)$. For a large range of $R=R(n)$, I will establish a sharp threshold for N, above which $V_{N} \rightarrow 1$ as $n \rightarrow \infty$, and below which $V_{N} \rightarrow 0$ as $n \rightarrow \infty$. I shall also discuss the case when K_{N} is generated by independent random vectors distributed uniformly on the Euclidean sphere. Analogous threshold results for both $R \in(0,1)$ and $R=1$ will be presented. This work was motivated by recent results of Gatzouras and Giannopoulos and uses the method developed by Dyer, Füredi and McDiarmid. (Received January 24, 2007)

