report.
The theory of impartial games is well known. Given an impartial game G, we may associate to it its Grundy number $\mathcal{G}(G)$, the smallest ordinal which does not appear among the Grundy numbers of G 's options. The impartial games which are losses for the next player to move are then exactly the impartial games with Grundy number 0. To find the Grundy number of a sum of multiple games (where a player's turn consists of a move in exactly one of the component games), one may write the Grundy numbers of each component game in base 2 , and then add without carry.

Making use of a new mechanic called a "challenge", we will define the " p-adic" sum of impartial games for every prime p, where the Grundy numbers of each component game should be written in base p and summed without carry. We will then present the winning strategies for a variety of impartial games played under the p-adic sum. (Received September 20, 2012)

