1086-05-1086 Ben Bond* (benbond@mit.edu). EKR sets for large n and r.

Let $\mathcal{A} \subset {\binom{[n]}{r}}$ be a compressed, intersecting family and let $X \subset [n]$. Let $\mathcal{A}(X) = \{A \in \mathcal{A} : A \cap X \neq \emptyset\}$ and $\mathcal{S}_{n,r} = {\binom{[n]}{r}}(\{1\})$. Motivated by the Erdős-Ko-Rado theorem, Borg asked for which $X \subset [2, n]$ do we have $|\mathcal{A}(X)| \leq |\mathcal{S}_{n,r}(X)|$ for all compressed, intersecting families \mathcal{A} ? We call X that satisfy this property *EKR*. Borg classified EKR sets X such that $|X| \geq r$. Barber classified X, with $|X| \leq r$, such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \mathcal{A} has a maximal element, we are able to sharpen this bound to $n > \varphi^2 r$ implies $|\mathcal{A}(X)| \leq |\mathcal{S}_{n,r}(X)|$. (Received September 18, 2012)