A company is interested in locating a distribution facility to supply clients with products that only can be delivered one at a time (because of, for example, weight, or size, or volatility). The company owns only two suitable delivery vehicles for this product, and wishes to make deliveries in such a way that the total distances traveled by each of the two delivery vehicles are as nearly equal as possible. Motivated by this situation, let x denote a vertex in a connected graph $\mathrm{G}=(\mathrm{V}$, E). We show that there exists a partition of $\mathrm{V}-\mathrm{x}$ into two non-empty subsets A and B so that the sum of the distances between x and all vertices in A differs by at most 1 from the sum of the distances between x and all vertices in B . In some cases this gives rise to a proper 2-colorings of the graph G. Vertices for which this difference is zero make ideal locations for such distribution facilities. We also consider instances of graphs in which this difference is 0 for all vertices x in G and instances of graphs in which this difference is 1 for all vertices x in G. (Received September 20, 2012)

