1086-05-1288 Zoltán Füredi, University of Illinois, Urbana, IL 61801, and Tao Jiang* (jiangt@muohio.edu), Miami University, Oxford, OH 45056. Hypergraph Turan numbers of loose cycles and linear cycles. Preliminary report.
Given a positive integer n and a family \mathcal{H} of r-graphs, the Turán number $e x_{r}(n, \mathcal{H})$ is the maximum number of edges in an r-graph on n vertices not containing any member of \mathcal{H}. An r-uniform loose cycle of length k consists of a cyclic list of r-sets $A_{1}, A_{2}, \ldots, A_{k}$ such that $A_{i} \cap A_{j} \neq \emptyset$ if and only if $i=j$ or i, j are consecutive modulo k. A loose cycle is linear if consecutive sets in the list intersect in precisely one element. Let \mathcal{C}_{k}^{r} denote the family of r-uniform loose cycles of length k and let L_{k}^{r} denote the r-uniform linear cycle of length k. For fixed $r, k \geq 3$, Mubayi and Verstraëte conjectured that $e x_{r}\left(n, \mathcal{C}_{k}^{r}\right)=\ell\binom{n-1}{r-1}+O\left(n^{r-2}\right)$, where $\ell=\left\lfloor\frac{k-1}{2}\right\rfloor$. They proved the conjecture for all r when $k=3$ or 4 .

We prove their conjecture for all $r \geq 4$ and $k \geq 3$ in a stronger form by establishing for all large n the exact value of $e x_{r}\left(n, \mathcal{C}_{k}^{r}\right)$. We also characterize the unique extremal construction and establish stability. When $r \geq 5$, we also obtain exact results for linear cycles. The asymptotics follow from a more general result that we establish. Our main tool is the Delta system method. (Received September 20, 2012)

