1086-05-1519 Ya-Chen Chen* (ya-chen.chen@asu.edu), Sacramento, CA 95814. Minimum K(2,3)-Saturated Graphs.
Let F be a graph. A graph is F-saturated if it has no F as a subgraph, but contains F after adding any new edge. The minimum number of edges in an F-saturated graph is sat(n, F). An F-saturated graph on n vertices with sat(n, F) edges is a sat (n, F)-graph. Erdos, Hajnal, and Moon proved that the $\operatorname{sat}(\mathrm{n}, \mathrm{K}(\mathrm{k}))$-graph is the join of $(\mathrm{n}-\mathrm{k}+2)$ independent vertices to every vertex in a complete graph $\mathrm{K}(\mathrm{k}-2)$ on ($\mathrm{k}-2$) vertices.

Pikhurko obtained sat(n, F) of the complete ($\mathrm{r}+1$)-partite graph $\mathrm{K}(1, \ldots, 1, \mathrm{t})$, as later did G. Chen, Faudree, and Gould. Let $\mathrm{K}(2,3)$ be the complete bipartite graph whose partite sets have size 2 and 3. Pikhurko and Schmitt presented $\mathrm{K}(2,3)$-saturated graphs with $(2 \mathrm{n}-3)$ edges and obtained a lower bound of sat(n, $\mathrm{K}(2,3))$. Bohman, Fonoberova, and Pikhurko determined sat(n, F) asymptotically for complete multipartite graph F as n tends to infinity and gave structural information about almost extremal F-saturated graphs. We prove their conjecture that sat(n, $\mathrm{K}(2,3))=2 \mathrm{n}-3$. (Received September 23, 2012)

