1086-05-1541 Daniel W. Cranston, William B. Kinnersley, Suil O and Douglas B. West* (west@math.uiuc.edu). Game matching number of graphs.
We study a competitive optimization version of $\alpha^{\prime}(G)$, the maximum size of a matching in a graph G. Players alternate adding edges of G to a matching until it becomes a maximal matching. One player (Max) wants that matching to be large; the other (Min) wants it to be small. The resulting sizes under optimal play when Max or Min starts are denoted $\alpha_{g}^{\prime}(G)$ and $\hat{\alpha}_{g}^{\prime}(G)$, respectively. We show that always $\left|\alpha_{g}^{\prime}(G)-\hat{\alpha}_{g}^{\prime}(G)\right| \leq 1$. We obtain a sufficient condition for $\alpha_{g}^{\prime}(G)=\alpha^{\prime}(G)$ that is preserved under cartesian product. Always $\alpha_{g}^{\prime}(G) \geq \frac{2}{3} \alpha^{\prime}(G)$, with equality for many split graphs, while $\alpha_{g}^{\prime}(G) \geq \frac{3}{4} \alpha^{\prime}(G)$ when G is a forest. Whenever G is a 3 -regular n-vertex connected graph, $\alpha_{g}^{\prime}(G) \geq n / 3$, and such graphs exist with $\alpha_{g}^{\prime}(G) \leq 7 n / 18$. For an n-vertex path or cycle, the value is roughly $n / 7$. (Received September 23, 2012)

