Quinn Donahoe*, Department of Mathematics, Pennsylvania State University, State College, PA 16802, and Jeremy Fehr, Department of Mathematics, Wesleyan University, Middletown, CT 06459. Ramsey Numbers $R\left(C_{4}, K_{n}\right)$, a Survey.

The Ramsey number $R\left(C_{4}, K_{n}\right)$ is the smallest number m such that every graph on m vertices contains a C_{4} or its complement contains a K_{n}. We provide an overview of methods that have been proven to be useful in calculating and bounding $R\left(C_{4}, K_{n}\right)$ for small n. We also summarize the techniques that have been used to prove the best-known bounds on the asymptotic behavior of $R\left(C_{4}, K_{n}\right)$. This includes our contribution of a constructive lower bound of $\Omega\left(n^{4 / 3}\right)$ using a construction from finite geometry. (Received August 03, 2012)

