Andrzej Czygrinow, H. A. Kierstead* (hal.kierstead@me.com) and Theodore Molla. On directed versions of the Corrádi-Hajnal Corollary. Preliminary report.
Corrádi and Hajnal proved that every graph G on $3 k$ vertices with $\delta(G) \geq 2 k$ has a C_{3}-factor. Wang proved that every directed graph G on $3 k$ vertices with minimum total degree $\delta_{t}(G):=\min _{v \in V}\left(\operatorname{deg}^{-}(v)+\operatorname{deg}^{+}(v)\right) \geq 3(3 k-1) / 2$ has a $D C_{3}$-factor, where $D C_{3}$ is the directed 3-cycle. The degree bound in Wang's result is tight. However, we prove that for all integers $a \geq 1$ and $b \geq 0$ with $a+b=k$, every directed graph G on $3 k$ vertices with $\delta_{t}(G) \geq 4 k-1$ has a factor consisting of a copies of $T C_{3}$ and b copies of graphs $D C_{3}$, where $T C_{3}$ is the transitive tournament on three vertices. In particular, using $b=0$, there is a $T C_{3}$-factor of G, and using $a=1$, it is possible to obtain a $D C_{3}$-factor of G by reversing just one edge of G. All these results are phrased and proved more generally in terms of undirected multigraphs.

We conjecture that every directed graph G on $3 k$ vertices with minimum semidegree

$$
\delta_{0}(G):=\min _{v \in V} \min \left\{d e g^{-}(v), d e g^{+}(v)\right\} \geq 2 k
$$

has a $D C_{3}$-factor, and prove that this is asymptotically correct. (Received September 24, 2012)

