1086-05-2598

Daniel Schaal* (daniel.schaal@sdstate.edu) and Corey Vorland. Rado Numbers for a

 Linear Inequality.In 1916, I. Schur proved the following theorem: For every integer t greater than or equal to 2, there exists a least integer $\mathrm{n}=\mathrm{S}(\mathrm{t})$ such that for every coloring of the integers in the set $1,2, \ldots, \mathrm{n}$ with t colors there exists a monochromatic solution to $\mathrm{x}+\mathrm{y}=\mathrm{z}$. The integers $\mathrm{S}(\mathrm{t})$ are called Schur numbers and are known only for $\mathrm{t}=2, \mathrm{t}=3$ and $\mathrm{t}=4$. R. Rado, who was a student of Schur, found necessary and sufficient conditions to determine if an arbitrary linear equation admits a monochromatic solution for every coloring of the natural numbers with a finite number of colors. Let L represent a linear equation or inequality and let t be an integer greater than or equal to 2 . The least integer n , provided that it exists, such that for every coloring of the integers in the set $1,2, \ldots, n$ with t colors there exists a monochromatic solution to L is called the t -color Rado number for L . If such an integer n does not exist, then the t -color Rado number for L is infinite. In this talk we will consider a family of linear inequalities for which the exact 2 -color Rado numbers have recently been determined. We will also present some open problems and discuss the general direction of research in this area. (Received September 25, 2012)

