1086-11-1089 Xinyun Zhu* (zhu_x@utpb.edu), Department of Mathematics and Computer Sci, 4901 E University Blvd, University of Texas at Permian Basin, Odessa, TX 79762, Aklilu Zeleke (zeleke@msu.edu), Department of Statistics and Probability, A440 Wells Hall, Michigan State University, East Lansing, MI 48824, Sivaram Narayan (sivaram.narayan@cmich.edu), Department of Mathematics, Pearce Hall 218, Central Michigan University, Mount Pleasant, MI 48859, and George Grossman (gross1gw@cmich.edu), Department of Mathematics, Pearce Hall 217, Central Michigan University, Mount Pleasant, MI. Recursive relations and combinatorial identities.
In this paper we generate solutions of a real, doubly indexed, second order recurrence relation of the form

$$
\begin{equation*}
-a_{k, n}-b a_{k, n+1}+c a_{k, n+2}=\binom{n+k+2}{n+2} \tag{1}
\end{equation*}
$$

with initial conditions, by two approaches, where b, c are real numbers, $c \neq 0$ and $\binom{n+k+2}{n+2}$ is binomial coefficient. We give the generating function for $a_{k, n}, n, k \geq 0$. We also express term $a_{k, n}$ explicitly, as a finite, double sum, with binomial coefficients and terms of the form b^{p} / c^{q}, for some positive integers p, q. Equating two equivalent solutions, we note that an interesting sequence of combinatorial identities can be determined and give some examples. (Received September 18, 2012)

