1086-11-1634
Paul Pollack* (pollack@uga.edu), Boyd Graduate Studies Research Center, Mathematics
Department, UGA, Athens, GA 30602. The smallest prime with a given splitting type in an abelian number field.
Let K / \mathbf{Q} be a finite, abelian extension. We describe a method, developed out of work of Linnik-Vinogradov and Elliott, for bounding above the smallest rational prime that is unramified and splits into a given number of distinct prime ideals in \mathcal{O}_{K}. One corollary is that for each $\epsilon>0$, the smallest prime that splits completely in K is $O_{n, \epsilon}\left(|D|^{\frac{1}{4}+\epsilon}\right)$, where n denotes the degree of K / \mathbf{Q} and D denotes its discriminant. We also give some applications to computing average prime-splitting statistics for families of number fields. (Received September 23, 2012)

