1086-11-1658 **Daniel J Kriz***, 1 Nassau Hall, Princeton, NJ 08544. On the Maximal Cross Number of Unique Factorization Multisets.

We study a conjecture of Gao and Wang concerning a proposed formula $K_1^*(G)$ for the maximal cross number $K_1(G)$ occuring among all unique factorization multisets over a given finite abelian group G. As a corollary of our first main result, we verify the conjecture for groups of the form $C_{p^m} \oplus C_p$, $C_{p^m} \oplus C_q$, $C_{p^m} \oplus C_q^2$, $C_{p^m} \oplus C_r^n$ where p, q are distinct primes and $r \in \{2,3\}$. In our second main result we verify that $K_1(G) = K_1^*(G)$ for groups of the form $C_r \oplus C_{p^m} \oplus C_p$, $C_{rp^m q}$ and $C_r \oplus C_p \oplus C_q^2$ for $r \in \{2,3\}$ given some restrictions on p and q. We also study general techniques for computing and bounding $K_1(G)$, and derive an asymptotic result which shows that $K_1(G)$ becomes arbitrarily close to $K_1^*(G)$ as the smallest prime dividing |G| goes to infinity, given certain conditions on the structure of G. We give new bounds for the cases when G is an arbitrary abelian p-group, in particular showing that in the case of p-groups, $K_1(G)$ is within $O\left(\frac{\log p}{p}\right)$ of $K_1^*(G)$ for all sufficiently large p, and also derive some necessary properties of the structure of unique factorization multisets which would hypothetically violate $k(S) \leq K_1^*(G)$. (Received September 23, 2012)