1086-11-1974 Duff G. Campbell* (campbell@hendrix.edu), Dept. of Mathematics and Computer Science, 1600 Washington Ave., Little Rock, AR 72212. Patterns in continued fractions for
\sqrt{n}. Preliminary report.
In an undergraduate number theory course, I asked my students to find patterns in the continued fraction expansions of \sqrt{n}, working from a list of expansions for $n=1$ to $n=100$. Every time I assign this problem, students find the five "classic" patterns, for $n=m^{2} \pm 1, n=m^{2} \pm 2$, and $n=m^{2}+m$. These patterns occur for every m. But one year, my students found some other patterns, which only occured for even m, or odd m. They also found two patterns for m divisible by 3. Inspired by their efforts, I looked at the data myself, and found sixteen other patterns, each restricted to its own congruence class $(\bmod M)$ with M 's up to 27 . In addition, I found other patterns where n had to satisfy a quadratic condition (such as n of the form $4 k^{2}+3 k+1$). Together, these twenty-odd patterns cover \sqrt{n} for n up to 68, and 87 of the first hundred, etc. I have also found patterns in the continued fraction expansions of algebraic integers which are roots of $x^{2}+x-n$. Here I have five patterns which apply to every n, fifteen that obey linear congruences, eight that satisfy quadratic congruences and two cubic congruences. Together, these patterns cover all n up to $n=23$, sixty-eight of the first hundred, etc. (Received September 24, 2012)

