1086-11-2513 Eva Goedhart* (egoedhart@brynmawr.edu). Solving the Diophantine equation $n x^{2}+2^{\ell} 3^{m}=y^{n}$. Preliminary report.
Let $n>3$ be an integer and consider the Diophantine equation

$$
n x^{2}+2^{\ell} 3^{m}=y^{n}
$$

with the requirements: $\ell, m, m \in \mathbb{N}, x, y \in \mathbb{Z}^{+}$, and $\operatorname{gcd}(n x, y)=1$.
In 2011, Y. Wang, T. Wang, F. Luca, and G. Soydan demonstrated that the equation has no integer solutions when $m=0$. Building on their work, I will outline the proof that the equation has no integer solutions for any positive integer values of ℓ and m. I will also discuss extensions to the result in which I prove $n x^{2}+3^{m}=y^{n}$ has no integer solutions for $n \neq 7(\bmod 8)$ when m is even and $n \neq 5(\bmod 8)$ when m is odd. The proofs depend on the parity of ℓ and m and a result of Yu.F. Bilu, G. Hanrot, and P.M. Voutier on defective Lehmer pairs. (Received September 25, 2012)

